Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 168: 107389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026428

RESUMO

The use of genome-scale data in phylogenetics has enabled recent strides in determining the relationships between taxa that are taxonomically problematic because of extensive morphological variation. Here, we employ a phylogenomic approach to infer evolutionary relationships within Ranitomeya (Anura: Dendrobatidae), an Amazonian lineage of poison frogs consisting of 16 species with remarkable diversity in color pattern, range size, and parental care behavior. We infer phylogenies with all described species of Ranitomeya from ultraconserved nuclear genomic elements (UCEs) and also estimate divergence times. Our results differ from previous analyses regarding interspecific relationships. Notably, we find that R. toraro and R. defleri are not sister species but rather distantly related, contrary to previous analyses based on smaller genetic datasets. We recover R. uakarii as paraphyletic, designate certain populations formerly assigned to R. fantastica from Peru as R. summersi, and transfer the French Guianan and eastern Brazilian R. amazonica populations to R. variabilis. By clarifying both inter- and intraspecific relationships within Ranitomeya, our study paves the way for future tests of hypotheses on color pattern evolution and historical biogeography.


Assuntos
Venenos , Animais , Anuros , Guiana Francesa , Peru , Filogenia
2.
Syst Biol ; 70(5): 1033-1045, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-33720363

RESUMO

Ancestral range estimation and projection of niche models into the past have both become common in evolutionary studies where the ancient distributions of organisms are in question. However, these methods are hampered by complementary hurdles: discrete characterization of areas in ancestral range estimation can be overly coarse, especially at shallow timescales, and niche model projection neglects evolution. Phylogenetic niche modeling accounts for both of these issues by incorporating knowledge of evolutionary relationships into a characterization of environmental tolerances. We present a new method for phylogenetic niche modeling, implemented in R. Given past and present climate data, taxon occurrence data, and a time-calibrated phylogeny, our method constructs niche models for each extant taxon, uses ancestral character estimation to reconstruct ancestral niche models, and projects these models into paleoclimate data to provide a historical estimate of the geographic range of a lineage. Models either at nodes or along branches of the phylogeny can be estimated. We demonstrate our method on a small group of dendrobatid frogs and show that it can make inferences given species with restricted ranges and little occurrence data. We also use simulations to show that our method can reliably reconstruct the niche of a known ancestor in both geographic and environmental space. Our method brings together fields as disparate as ecological niche modeling, phylogenetics, and ancestral range estimation in a user-friendly package. [Ancestral range estimation; ancestral state reconstruction; biogeography; Dendrobatidae; ecological niche modeling; paleoclimate; phylogeography; species distribution modeling.].


Assuntos
Clima , Ecossistema , Modelos Teóricos , Filogenia , Filogeografia
4.
Mol Phylogenet Evol ; 142: 106638, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586688

RESUMO

The Amazonian poison frog genus Ameerega is one of the largest yet most understudied of the brightly colored genera in the anuran family Dendrobatidae, with 30 described species ranging throughout tropical South America. Phylogenetic analyses of Ameerega are highly discordant, lacking consistency due to variation in data types and methods, and often with limited coverage of species diversity in the genus. Here, we present a comprehensive phylogenomic reconstruction of Ameerega, utilizing state-of-the-art sequence capture techniques and phylogenetic methods. We sequenced thousands of ultraconserved elements from over 100 tissue samples, representing almost every described Ameerega species, as well as undescribed cryptic diversity. We generated topologies using maximum likelihood and coalescent methods and compared the use of maximum likelihood and Bayesian methods for estimating divergence times. Our phylogenetic inference diverged strongly from those of previous studies, and we recommend steps to bring Ameerega taxonomy in line with the new phylogeny. We place several species in a phylogeny for the first time, as well as provide evidence for six potential candidate species. We estimate that Ameerega experienced a rapid radiation approximately 7-11 million years ago and that the ancestor of all Ameerega was likely an aposematic, montane species. This study underscores the utility of phylogenomic data in improving our understanding of the phylogeny of understudied clades and making novel inferences about their evolution.


Assuntos
Anuros/classificação , Animais , Anuros/genética , Teorema de Bayes , Genômica , Filogenia , América do Sul
5.
Zootaxa ; 4712(2): zootaxa.4712.2.3, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-32230685

RESUMO

We describe two new species of poison frog from central and southern Peru that have been referred to as Ameerega picta, A. hahneli, or A. altamazonica throughout the past thirty years. Our phylogenies generated with genomic data provide strong support that the two new species are successive sisters to two described taxa, A. rubriventris and A. altamazonica, and collectively comprise the Ameerega rubriventris complex. The first new taxon, Ameerega panguana sp. nov., can be distinguished from all other Ameerega by its combination of a unique white venter and an advertisement call of 1-2 notes per second. The second new taxon, Ameerega imasmari sp. nov., is the only cryptically colored Ameerega species that is disttributed across the Fitzcarrald Arch in Southern Peru which possesses a 'peep' advertisement call consisting of 3-4 notes per second and a dominant frequency of 4.3-4.5 kHz. Within the Ameerega rubriventris complex, we observed differences between species in their ventral coloration, tympanum diameter, and call, which suggest that these taxa are reproductively isolated from each other.


Assuntos
Anuros , Animais , Peru , Filogenia
6.
Genome Biol Evol ; 10(6): 1504-1515, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850800

RESUMO

We sequenced mitochondrial genomes from five diverse diatoms (Toxarium undulatum, Psammoneis japonica, Eunotia naegelii, Cylindrotheca closterium, and Nitzschia sp.), chosen to fill important phylogenetic gaps and help us characterize broadscale patterns of mitochondrial genome evolution in diatoms. Although gene content was strongly conserved, intron content varied widely across species. The vast majority of introns were of group II type and were located in the cox1 or rnl genes. Although recurrent intron loss appears to be the principal underlying cause of the sporadic distributions of mitochondrial introns across diatoms, phylogenetic analyses showed that intron distributions superficially consistent with a recurrent-loss model were sometimes more complicated, implicating horizontal transfer as a likely mechanism of intron acquisition as well. It was not clear, however, whether diatoms were the donors or recipients of horizontally transferred introns, highlighting a general challenge in resolving the evolutionary histories of many diatom mitochondrial introns. Although some of these histories may become clearer as more genomes are sampled, high rates of intron loss suggest that the origins of many diatom mitochondrial introns are likely to remain unclear.


Assuntos
Diatomáceas/genética , Transferência Genética Horizontal/genética , Genoma Mitocondrial/genética , Íntrons/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA/métodos
7.
PLoS One ; 11(8): e0161531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556533

RESUMO

Obtaining sequence data from historical museum specimens has been a growing research interest, invigorated by next-generation sequencing methods that allow inputs of highly degraded DNA. We applied a target enrichment and next-generation sequencing protocol to generate ultraconserved elements (UCEs) from 51 large carpenter bee specimens (genus Xylocopa), representing 25 species with specimen ages ranging from 2-121 years. We measured the correlation between specimen age and DNA yield (pre- and post-library preparation DNA concentration) and several UCE sequence capture statistics (raw read count, UCE reads on target, UCE mean contig length and UCE locus count) with linear regression models. We performed piecewise regression to test for specific breakpoints in the relationship of specimen age and DNA yield and sequence capture variables. Additionally, we compared UCE data from newer and older specimens of the same species and reconstructed their phylogeny in order to confirm the validity of our data. We recovered 6-972 UCE loci from samples with pre-library DNA concentrations ranging from 0.06-9.8 ng/µL. All investigated DNA yield and sequence capture variables were significantly but only moderately negatively correlated with specimen age. Specimens of age 20 years or less had significantly higher pre- and post-library concentrations, UCE contig lengths, and locus counts compared to specimens older than 20 years. We found breakpoints in our data indicating a decrease of the initial detrimental effect of specimen age on pre- and post-library DNA concentration and UCE contig length starting around 21-39 years after preservation. Our phylogenetic results confirmed the integrity of our data, giving preliminary insights into relationships within Xylocopa. We consider the effect of additional factors not measured in this study on our age-related sequence capture results, such as DNA fragmentation and preservation method, and discuss the promise of the UCE approach for large-scale projects in insect phylogenomics using museum specimens.


Assuntos
Sequência Conservada , Componentes Genômicos , Genoma de Inseto , Insetos/classificação , Insetos/genética , Análise de Sequência de DNA , Animais , Biologia Computacional/métodos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...